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I. Liquids Are Not Held Together by Springs 

It hardly needs saying that the presence, and indeed 
the dynamics, of liquids plays a crucial role in chemical 
processes ranging from electron transfer1 to acid-base 
chemistry.2 Sometimes this role is merely the result 
of the solvent's availability as a reactant present in 
huge excess, but more generically, it arises becauses 
solvents can solvate: they can alter the energy of a 
species in striking fa~hion .~  The classic freshman 
textbook example points out that it would be energeti- 
cally unlikely for Na to ionize in water (the octet rule 
notwithstanding) were it not for the solvation afforded 
the resulting Na+ ions.4 Suppose, then, that one 
wanted to understand this solvation process in some 
detail. "here is presumably a significant free energy 
barrier that must be overcome in order for water to 
rearrange itself so as to accommodate a solute, so how, 
precisely, will water molecules reorient and translate 
so as to provide the optimum compromise between 
their own eminently satisfactory hydrogen-bonding 
network and the annoying demands of an interloper 
solute molecule? How fast will they adopt the pre- 
ferred geometry? Which particular motions will hap- 
pen first? 

Unfortunately, it would not take all that pessimistic 
an outlook to predict that we will never be able to  
understand the motion of molecules in liquids in 
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sufficient detail to be able to tackle these questions. 
"he behavior of molecules in gases is easy; the average 
intermolecular distances are so large that molecules 
can be regarded as all but solitary creatures whose 
tranquil existence is disturbed only infrequently and 
only then by the presence of a single intruder at a 
time. Solids might seem a much more difficult case, 
but they too often turn out not to present all that much 
of a challenge. As long as we restrict ourselves to 
small oscillations about perfect crystalline order, it is 
possible to  regard the motion of a single molecule in 
a solid as being just a small part of one of the various 
possible simultaneous (collective) motions of the entire 
crystal. These collective motions-the phonons of the 
crystal-are as independent from one another as 
individual molecules are in a gas, and they are 
consequently just as simple to handle. But what of 
liquids? 

Liquids being almost as dense as solids (and oc- 
casionally even more dense ), there is not overmuch 
temptation to  pretend that liquids are gases, but the 
hope that they can be thought of as solids resurfaces 
over and over again in the literature. The fervent 
wish that some sort of phonon description might 
capture the essence of the dynamics has proven just 
too seductive to  abandon. The immediate reaction to 
this idea, though, with more than a little justification, 
is that it is not all that sensible. Phonon pictures 
require that the intermolecular forces can be regarded 
as harmonic, and liquids can simply not be viewed as 
being held together by springs. The success enjoyed 
by modern theories of liquid structure is, in fact, based 
on the notion that the intermolecular forces that 
determine equilibrium molecular arrangements are 
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often so sharply varying and strongly repulsive that 
liquids can frequently be thought of as a case study 
in randomly packing hard obje~ts .~  Moreover, the 
standard justification for a harmonic picture working 
in solids is that the atoms are merely executing small 
oscillations about some stable structure. Since the 
arrangement is stable, the first derivative of the 
potential energy must vanish. So, to  first order, there 
is no effect of an atomic displacement; the first 
nonvanishing contribution must therefore be quadratic 
in the displacements, making the potential purely 
harmonic for suitably tiny displacements. In liquids, 
on the other hand, any instantaneous snapshot would 
reveal a structure that was not mechanically stable. 
Nor, for that matter would one expect displacements 
to be small. Atoms in liquids will diffuse and the 
liquid as a whole will flow. 

This gloomy picture having been painted for our 
prospects for understanding the dynamics of liquids, 
it might come as somewhat of a surprise to  learn how 
promising the outlook really is. An intriguing conflu- 
ence of theoretical and experimental developments 
have recently shown how one can actually begin to 
answer microscopically detailed questions about pro- 
cesses such as solvation.6 New theoretical develop- 
ments in the study of liquid excitations, in par- 
t i ~ u l a r , ~ - ’ ~  have pointed the way to accurate descrip- 
tions of liquid-state molecular motions that are, of all 
things, harmonic. As we shall describe in the remain- 
der of this Account, one of the main characteristics of 
such newer harmonic approaches (instantaneous- 
normal-mode theories) is that they are deliberately 
designed to work well at short times. This feature is 
an especially intriguing one in that it focuses our 
attention on precisely the kinds of time intervals that 
recent ultrafast spectroscopic experiments have shown 
to be crucial to so1vation.l6J7 
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11. What Instantaneous Normal Modes Are 
and Are Not 

The difficulties with harmonic interpretations of 
liquid motion notwithstanding, there is a rather long 
history of both harmonic pictures and harmonic meth- 
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ods being applied to liquids, often with reasonable 
success. Some of these applications are of the “it sure 
looks like an oscillator” variety: there is no direct 
identification of what is supposed to be oscillating 
(because all that is observed is some sort of averaged, 
collective, response), but various properties of the 
liquid do seem to resemble what would be seen if there 
were some kind of coherent oscillation occurring. 
Historically, the most important examples in this 
category are instances in,which one interprets peaks 
in the inelastic neutron scattering data (that is, the 
spectrum of density fluctuations as measured by the 
inelastic structure factor of the liquid S(k ,o) )  as if they 
represented identifiable motions. Within such a frame- 
work, one can distinguish liquids such as molten salts 
and liquid metals from liquids such as Ar by the extent 
to  which they have “propagating modes”, and one even 
talks about the wave vectors, polarizations, and speeds 
of propagation of the modes.18 

At the opposite extreme are the “it doesn’t matter 
if the oscillators are there or not” cases. In these 
examples, one takes advantage of the marvelous 
mathematical properties of a collection of harmonic 
oscillators to  create a formal representation of some 
piece of macroscopic phenomenology. The classic 
instances here involve the description of a variety of 
solute properties with generalized Langevin equa- 
t i o n ~ . ~ ~  Ever since Zwanzig pointed out that it is 
possible to think of both friction and the random forces 
as if they came from a set of simple harmonic oscil- 
lators instead of from a real solvent,z0 generalized 
Langevin equations have found themselves in the 
midst of problems ranging from chemical reaction 
kineticsz1 to vibrational relaxation.zz What has made 
them increasingly popular in recent years is the fact 
that there is a more or less well-defined route from 
computer-simulatable correlation functions (such as 
the force or the velocity autocorrelation functions) to 
what is often referred to as the spectral density of the 
hypothetical harmonic bathaZ3 There is no presump- 
tion that such harmonic oscillators are in any sense 
real, and there are technical issues relating to the fact 
that the correlation functions one needs as input ought 
to be “projected” rather than ordinary correlation 
functions,z4 but the lure of replacing a solvent by a 
set of springs has proven remarkably difficult to resist. 
Much the same might be said of the Brownian oscil- 
lator description of spectroscopic behavior in solu- 
t i ~ n . ~ ~  Here one simply postulates the existence of a 
set of damped oscillators in order to mimic the 
experimental observations that spectra in solution 
exhibit dephasing and energy relaxation. Unfortu- 
nately, there has been no analog proposed for the 
Zwanzig theorem that underlies the generalized Lan- 
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gevin equations, but the ability of Brownian oscillators 
to  represent the data is often welcome. 

Motivated in part by such harmonic bath applica- 
tions, there have been a number of first principles 
theoretical attempts at prescribing what the phonons 
in a liquid ought to  be. Two of the more promising 
studies were by Hubbard and Beeby26 and by Zwan- 
~ i g . ~ ~  Both of these attempted to arrive at a single 
number for the phonon frequency (or the frequency 
as a function of wave vector) by looking at liquids on 
the average, the former by looking at the approximate 
linear response to a periodic probe, and the latter by 
estimating the eigenvalues of the Liouville operator. 
Because of the averaging, however, one always lost 
the microscopic identity of the phonon mode, meaning 
that there was no way to associate a mode with the 
particular movements of particular atoms. An in- 
triguing alternative which does not suffer from this 
problem is provided by the quenched normal modes 
associated with the Stillinger-Weber inherent struc- 
tures of liquids.28 The idea here is to quench the liquid 
repeatedly to find the minima on the liquid‘s potential 
energy surface and once there perform a standard 
small-oscillation normal-mode analysis.29 So far, 
though, there has been no analytical theory showing 
how one might understand the resulting spectra, so 
the procedure has functioned largely as a computer 
simulation algorithm, albeit a rather conceptually 
useful one. 

The instantaneous normal modes,9~~O-~~ for better 
or worse, differ in significant ways from all of these 
approaches. It should be emphasized that the com- 
putational scheme for generating them has been 
applied from time to time for almost 20 but 
what seem to be the new features are, first, the 
realization that instantaneous normal modes can 
provide an accurate picture of the short-time dynamics 
of liquids at a completely microscopic level and, 
second, that, despite their wealth of detail, one can 
actually understand some of their properties from the 
statistical mechanics of liquids. 

The “modern” derivation of the concept proceeds as 
 follow^:^^^^^^^ Suppose we ask how the potential energy 
V of a liquid differs at some time t from what it was 
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at time 0. What difference there is arises from the 
change in the liquid configuration (& - &), so i f  the 
time interval is short enough, we can expand the 
potential energy difference in powers of this change, 

V(RJ V(R0) - F*(Rt - &J + 
‘/2(Rt - R&D*(Rt - RO) (1) 

where F is the instantaneous (time 0) force and D, 
the dynamical matrix, is the instantaneous Hessian 
matrix of second derivatives of the potential energy.45 
Every new liquid configuration (that is, every new 
choice of time 0) will have its own force and dynamical 
matrix, but for each choice there is a variable 
transformation-a matrix U-that will diagonalize D, 
turning the 3N Cartesian coordinates of the N atoms 
into 3N collective coordinates q( t )  = (qa(t); a = 1, ..., 
3N) and our expression for the potential energy 
difference into a sum of independent harmonic con- 
tributions: 

Here, the quantities f a  and wa2 are the components of 
the transformed force and the eigenvalues of the 
dynamical matrix, respectively. 

What one might call the instantaneous-normal- 
mode perspective, then, is that the dynamics of a 
liquid at short times is governed by precisely the 
dynamics of these qa(t) modes 

(4) 

and that this dynamics, in turn, is nothing but simple 
harmonic motion for the coordinates qa and the 
corresponding velocities Va: 

qa(t)  = (f,/o,2~1 - cos o a t )  + [v,(~)/o,l(sin oat> 

va(t> = v,(o) cos oat + (f,/o,2>(sin oat> ( 5 )  

In this treatment the time evolution of a liquid 
configuration is completely prescribed by the set of 
instantaneous forces f a ,  frequencies ma, and velocities 
Va(0).  Thus, in practice, all that one needs to  know 
are the probability distributions of these equilibrium 
quantities (as determined by the equilibrium distribu- 
tion of liquid configurations) in order to  be able to  
compute the short-time behavior of any desired time 
correlation function. Moreover, the fact that the 

Rt = Ro + U’*q(t) 
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answers so derived will usually end up being a sum 
of contributions from each mode a will give us a nice 
physical interpretation. We will be able to  think of 
the dynamics as if it arose from a variety of collective, 
but mutually independent, harmonic modes. 

It is probably worth making the point fairly strongly 
that this approach is really quite narrow in its claims 
as to what is and is not harmonic in a liquid. To begin 
with, because the instantaneous frequencies and forces 
vary from liquid configuration to liquid configuration, 
the formalism does not imply that any of the liquid's 
statistics are necessarily Gaussianly distributed. In 
fact, there is neither an expectation nor a necessity 
that any equilibrium properties will be governed by 
harmonic potentials; the theory has nothing to say 
about the values of purely thermodynamic quantities 
such as heat ~apac i t i e s .~~  By way of contrast, most 
other harmonic treatments of liquids, quite sensibly, 
make no such distinctions between the potentials 
governing static and dynamic properties. Indeed 
instantaneous-normal-mode theories are somewhat 
internally inconsistent in this regard: they are com- 
pelled at very long times to yield the distribution of 
liquid configurations that one would obtain if the 
intermolecular interactions were governed by har- 
monic forces instead of the true forces, in violation of 
the fluctuation dissipation theorem. Provided that one 
is interested in times well short of this asymptotic 
behavior, however, we are actually guaranteed to have 
a sensible prescription-derivable from the true in- 
termolecular potentials-for casting the dynamics of 
liquids into harmonic terms. The reasonableness of 
this approach is evidenced, among other things, by 
theorems assuring us of the accuracy of our predicted 
dynamics. Both velocity autocorrelation functions and 
solvation correlation functions, for example, are guar- 
anteed to be correct through order t4.31134 
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111. Applications of Instantaneous Normal 
Modes 

The instantaneous-normal-mode concept has now 
been successfully applied to a surprisingly wide range 
of problems, many of which have little to do, in a direct 
sense, with short-time dynamics. The more notable 
instances involve calculating diffusion  constant^,^^,^^ 
handling multiple time scales,47 investigating the 
nature of and mapping the topography of 
the potential surfaces of anything from colloids to  
proteins.33t37,48t49 Partly because of space limitations, 
but also to  highlight the rather different perspec- 
tive just outlined, we shall not be discussing any of 
these studies here. Instead we shall just present a 
few applications which specifically illustrate the power 
of the approach in illuminating the "transientn dy- 
namics that seems to govern so much of liquid 
behavior. 
A. The Instantaneous-Normal-Mode Spectrum 

Itself. In most applications, the distribution of in- 
stantaneous-normal-mode frequencies would be com- 

(46) See, however, ref 37 for attempts to make use of instantaneous 
normal modes to ascertain equilibrium quantities. 
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Figure 1. Instantaneous-normal-mode spectrum of liquid Ar 
at 158 K and at  a density of 1.27 g/cm3 as computed by 
simulation (solid line) and by two different levels of analytical 
theory (dashed and dotted lines). 

puted simply by generating an equilibrium ensemble 
of liquid configurations via simulation, constructing 
the dynamical matrix for each configuration, and then 
performing numerical diagonalizations. However, for 
atomic liquids, as illustrated in Figure 1, the distribu- 
tion of eigenvalues of this sort can be mapped into 
more conventional liquid problems, enabling us to 
bring the analytical techniques of liquid theory to bear 
and providing us with some insight into the physical 
origins of the various Indeed, the spectrum 
shown in Figure 1, that of a rare gas liquid, is not all 
that atypical of the spectra one would obtain for most 
liquids, including both p 0 l a l . 3 ~ ~ ~ ~  and 
molecular liquids, and atomic mixtures.41 There is a 
signature right-triangle shape to the positive-eigen- 
value portion of the spectrum, which arises from the 
prevalence of the soft (low-frequency) motions that are 
possible in any liquid, and there is a small, but not 
insignificant, fraction of imaginary modes (i.e., those 
for which the eigenvalues w2 < 01, which are depicted, 
for convenience, on the negative frequency axis. 
These, too, are a universal feature of liquids (though 
they are also seen in hot solids) since they reflect the 
presence of negative curvatures on the potential 
surface, without which it would be impossible to have 
the barriers and saddle points that must be present 
in a mechanically unstable substance. 

These special characteristics of liquid spectra have 
actually been used as a marker for phase changes in 
small  cluster^.^^^^ As is apparent in Figure 2, even 
an AT13 cluster will exhibit a liquid-like spectrum at 
sufficiently elevated temperatures. By way of con- 
trast, the disappearance of the imaginary modes, the 
loss of the right-triangle shape, and the feature at 60 
cm-l (which is precisely the location of the longitu- 
dinal mode peak in the bulk solid's phonon 

(50) Ladanyi, B. M.; Stratt, R. M. J. Phys. Chem., submitted. 
(51) Cohen, S. S.; Klein, M. L. In Inert Gases; Klein, M. L., Ed.; 

Springer-Verlag: Berlin, 1984; p 110. 
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Figure 2. Instantaneous-normal-mode spectrum of an A r 1 3  
cluster under solid-like conditions (upper panel) and liquid-like 
conditions (lower panel). 
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Figure 3. Instantaneous-normal-mode spectrum of liquid H2O 
under ambient conditions (298 K and 1 g/cm3). Also shown here 
are the translational and rotational components of the spectrum 
(as determined by the instantaneous-normal-mode eigenvec- 
tors). 

all suggest that the low-temperature form is quite 
solid-like. While there is no sudden transition be- 
tween these two kinds of spectra, the mere existence 
of two such different kinds of dynamics has helped to 
clarify what it means to  speak of distinct phases in a 
cluster . 

Lest the impression be given that Ar is all there is 
to  liquids, it should be noted that not every liquid's 
spectrum has an identical appearance. If one exam- 
ines the spectrum of liquid HzO (Figure 3),33 one is 
struck by the relatively small fraction of imaginary 
modes (only 6% of the total, as opposed to 21% in 
liquid CH3CN and as many as 33% in liquid Ar)32335 
and by the distinctive high-frequency peak. Signifi- 
cantly, because the modes themselves are known in 
microscopic detail, we can easily establish the origin 
of this peak. By projecting out the proportions of each 
mode that correspond to rotational and translational 
degrees of freedom (Figure 3),31,33 we see that the high- 
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Figure 4. Normalized translational (upper panel) and rota- 
tional (lower panel) velocity autocorrelation functions for neat 
liquid CH&N under ambient conditions (293 K, 1 atm). In both 
cases, the solid line is the exact molecular dynamics result, the 
dot-dashed line is the full instantaneous-normal-mode predic- 
tion, and the dashed line is the instantaneous-normal-mode 
prediction obtained when only real (stable) modes are included. 

frequency motion is almost entirely due to molecular 
libration, hardly surprising in a strongly hydrogen 
bonding fluid. What is perhaps a bit more surprising 
is that the spectrum of center-of-mass translations still 
strongly resembles that of nonassociated fluids, de- 
spite the presence of these same hydrogen bonds. In 
fact, what one invariably sees is that the instantaneous- 
normal-mode spectra of liquids differ from one another 
mainly in their rotational portions; the dynamics of 
net molecular translation seems to be fairly univer- 

B. Predictions for Dynamics. Equations 4 and 
5 tell us, in principle, everything we need to know to  
understand liquid dynamics. For example, simply by 
using eq 5 and averaging over the equilibrium quanti- 
ties, it is straightforward to show that the (single- 
molecule) translational-velocity and angular-velocity 
autocorrelation functions are simply Fourier trans- 
forms of Dtrans((w) and Drot((w), the translational and 
rotational portions of the liquid's spectrum:31 

sa1.5z 

(v(O)*v(t))/(v*v) = j d w  Dtrans(w) cos wt 

(i30)*7;(t))/(ZG) = j d w  Drot(w) cos ut (6) 

As we see for CH3CN (Figure 4)35 and for HzO (Figure 
5),33 the predictions can be quite remarkable at short 
times. Physically, these functions convey the extent 
to which a molecule in a liquid remembers its center- 
of-mass or angular momentum, so where these func- 
tions are most negative is the time at which the 
velocity is most out of phase with the initial velocity, 
which, in some sense, reflects the extent of the 
molecular "rebound" from its surrounding solvent 
cage. Though it is a highly intuitive concept, the 

(52) If one removes the restriction to rigid molecular models, the 
instantaneous normal modes of a molecular liquid will also include 
contributions from intramolecular  vibration^.^^ These (largely) intramo- 
lecular modes will, of course, differ greatly from liquid to liquid. 
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Figure 5. Normalized angular-velocity autocorrelation func- 
tions for neat liquid HzO relative to the three principal molec- 
ular axes. The solid line is the exact molecular dynamics result, 
and the dotted line, the instantaneous normal-mode prediction 
(neglecting imaginary modes). 

strongly collective character of cage-like behavior 
makes it difficult to  capture from first-principles 
theories.53 The ability of this approach to encompass 
the cage idea, and to do so within a simple harmonic 
model, is therefore particularly welcome. 

It should be pointed out (in the interest of truth in 
advertising) that in performing these calculations one 
has to discard the imaginary modes from the spectra 
in order to  prevent unphysical divergences of the 
correlation functions.31 This procedure does make a 
certain amount of physical sense in that the imaginary 
modes are indicative of motion that is, in a literal 
(Lyapunov) sense, unstable.54 Simply put, the places 
where the local potential curvature is negative are 
terrible locations from which to extrapolate future 
dynamics. Nonetheless, having to ignore any of the 
spectrum is a bit dis~oncerting.~~ Fortunately for our 
present purposes, the fraction of imaginary modes is 
relatively small in interesting solvents and the fraction 
of such modes that contribute to  short-time solvation 
dynamics turns out to  be even ~ m a l l e r . ~ ~ ~ ~ ~  Still, it 
remains an interesting open question whether what 
these modes are really trying to tell us is information 
about the long-time dynamics.37 

Our final, and most revealing, illustration of instan- 
taneous normal modes takes us back to the question 
we posed at the beginning of this Account: How, 
precisely, does solvation take place? The kinds of 

(53) Lynden-Bell, R. M.; Steele, W. A. J. Phys. Chem. 1984,88,6514. 
Lynden-Bell, R. M.; Hutchinson, D. J. C.; Doyle, M. J. Mol. Phys. 1986, 
58, 307. Ruhman, S.; Nelson, K. A. J .  Chem. Phys. 1991, 94, 859. 
Patron, F.; Adelman, S. A. Chem. Phys. 1991, 152, 121. 

(54) Eckmann, J.-P.; Wayne, C. E. J. Stat. Phys. 1988, 50, 853. 
(55) For example, the exact theorems that predict that instantaneous 

normal mode formulas are accurate to order t4 rely on all of the modes 
being included in the calculation, including the imaginary ones. 
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Figure 6. Solvation spectrum of acetonitrile (as seen by a 
dipolar solute), along with the projections into rotational, 
translational, and rotation-translation-coupled parts. 

correlation functions of interest now are those that 
look at the fluctuations 6A in the solute-solvent 
interaction A, 

since the rate at which the solvent accomplishes the 
solvation process is proportional (at least in linear 
response theory) to just these functions.56 To evaluate 
this correl?tion function we can look at an intimately 
related, and somewhat easier to  calculate, function, 
the solvation velocity correlation function: 

G(t)  = (A(0) A(t)) = -((dA)2) (d2C(t)/dt2) 

If we assume, within the spirit of the instantaneous- 
normal-mode idea, that the time interval which the 
interaction A(t) evolves is small, then we can expand 
in powers of the instantaneous normal modes: 

A(t) = A(0)  + x,A',q,(t) + ... 
A', = (awaQa)t,o 

We can truncate this expansion at any order we have 
the patience for, but within a linear theory, substitut- 
ing eq 5 yields the amazingly simple result that G(t) 
is just the Fourier transform of what one might call 
the solvation spectrum, esolv(w), 

G(t) = k B T j d w  Qsolv(o) cos ot (7) 

which is nothing more than the distribution of mode 
frequencies weighted by how efficiently each mode 
couples to  the solute.34 

The solvation spectrum itself is an interesting 
object, as we can see from the case of liquid CH&N 
(Figure 6).35 The fact that the bulk of this spectrum 

(56)Maroncelli, M.; Fleming, G. J. Chem. Phys. 1988, 89, 5044. 
Bader, J. S.; Chandler, D. Chem. Phys. Lett. 1989, 157, 501. 

(57) The first-shell response is generated by extending the rotationaY 
translational projection analysis mentioned in the text so as to discrimi- 
nate by distance scales as well. For this example, the relaxation of the 
solvent as a whole is actually noticeably slower than that of the first 
shell alone and is less well described by linear solvation theory beyond 
the first 200 fs. 
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Figure 7. Contributions to the solvation time correlation 
functions from the first solvation shell for a dipolar solute 
dissolved in liquid acetonitrile.57 For both the experimentally 
relevant C(t) correlation function and the related a t )  correlation 
function (defined in the text), the solid line is the exact molecular 
dynamics result, the dot-dashed line is the full instantaneous- 
normal-mode prediction, and the dashed line is the instantaneous- 
normal-mode prediction obtained when only real (stable) modes 
are included. 

belongs to  rotational motion tells us that the over- 
whelmingly majority of early solvation events in polar 
solvation arise from solvent reorientation. Somewhat 
more quantitatively, since one can show rigorously 
that the solvation frequency wsolv, defined by fitting 
C(t) at early times to a Gaussian decay 

scales with the area under the solvation spectrum 
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case is librational in character. The ultrarapid initial 
decay of the actual solvation correlation functions 
(Figure 7) can therefore easily be analyzed in molec- 
ular term~.3~1~O 

IV. Concluding Remarks 

Perhaps the real power of the kinds of analysis 
discussed here will not so much lie in providing yet 
another set of vibrational frequencies that one can 
associate with liquids as it will reside in the molecular 
definitions of the modes themselves. The intriguing 
idea that each mode describes a genuinely collective 
many-body motion operating in a liquid may ulti- 
mately prove to have more far reaching consequences 
than any aggregate spectrum. Of course, these modes 
are derived from a purely harmonic treatment and we 
certainly do not expect to be able to ignore forever the 
hard fact that liquids are anharmonic. Even so, it may 
be worth remembering that the need to incorporate 
anharmonicity has hardly lessened the conceptual and 
computational value of traditional normal modes as 
useful points of departure for numerous more sophis- 
ticated approaches to small-molecule dynamics. Per- 
haps our understanding of the dynamics of liquids will 
eventually follow a similar path. 
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it is clear that some 76% of the initial solvation in this 


